(本小题满分15分)如图,过抛物线焦点F的直线l与抛物线交于A,B两点(A在第一象限),点C(0,t)(t>1). (I)若△CBF,△CFA,△CBA的面积成等差数列,求直线l的方程; (II)若,且∠FAC为锐角,试求t的取值范围。
(本小题满分14分)已知等差数列,首项为1的等比数列的公比为,且成等比数列。 (1)求的通项公式; (2)设成等差数列,求k和t的值。
(本小题满分14分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知 (1)当c=1,且△ABC的面积为的值; (2)当的值。
已知椭圆 C 的中心在原点,焦点在轴 x 上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为 Q ).
(Ⅰ)求椭圆 C 的方程; (Ⅱ)设点 P 是椭圆 C 的左准线与 x 轴的交点,过点 P 的直线 l 与椭圆 C 相交于 M , N 两点,当线段 M N 的中点落在正方形 Q 内(包括边界)时,求直线 l 的斜率的取值范围。
已知函数,其中若在x=1处取得极值,求a的值;求的单调区间; (Ⅲ)若的最小值为1,求a的取值范围。