已知直线l的方程为,且直线l与x轴交于点M,圆与x轴交于两点(如图).(I)过M点的直线交圆于两点,且圆孤恰为圆周的,求直线的方程;(II)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;(III)过M点的圆的切线交(II)中的一个椭圆于两点,其中两点在x轴上方,求线段CD的长.
已知椭圆E的两个焦点分别为和,离心率. (1)求椭圆E的方程; (2)设直线与椭圆E交于A、B两点,线段AB的垂直平分线交x轴于点T,当m变化时,求△TAB面积的最大值.
如图,底面是正三角形的直三棱柱中,D是BC的中点,. (Ⅰ)求证:平面; (Ⅱ)求的A1 到平面的距离.
在中,已知内角,边.设内角,面积为y. (1)若,求边AC的长; (2)求y的最大值.
已知函数. (1)求的最小正周期; (2)已知,求的值.
已知等差数列的前n项和,且, (1)求数列的通项公式; (2)设,求数列的前n项和.