已知线段PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点。 (1)求证:MN//平面PAD; (2)当∠PDA=45°时,求证:MN⊥平面PCD;
选修4-5:不等式选讲已知函数(1)若的解集为,求实数的值;(2)当且时,解关于的不等式
选修4-4:坐标系与参数方程选讲在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的普通方程与曲线的直角坐标方程;(2)设点,曲线与曲线交于,求的值.
选修4-1:几何证明选讲.如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点.(1)求证:;(2)若四点共圆,且弧与弧相等,求
设函数,其中,曲线过点,且在点处的切线方程为.(1)求的值;(2)证明:当时,;(3)若当时,恒成立,求实数的取值范围.
已知抛物线上一点到其焦点的距离为4;椭圆的离心率,且过抛物线的焦点.(1)求抛物线和椭圆的标准方程;(2)过点的直线交抛物线于、两不同点,交轴于点,已知,求证:为定值.(3)直线交椭圆于,两不同点,,在轴的射影分别为,,,若点S满足:,证明:点S在椭圆上.