已知⊙过点,且与⊙:关于直线对称.(Ⅰ)求⊙的方程;(Ⅱ)设为⊙上的一个动点,求的最小值;(Ⅲ)过点作两条相异直线分别与⊙相交于,且直线和直线的倾斜角互补,为坐标原点,试判断直线和是否平行?请说明理由.
选修4—4:坐标系与参数方程 已知直线l:(t为参数)恒经过椭圆C:(为参数)的右焦点F. (Ⅰ)求m的值; (Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|·|FB|的最大值与最小值.
选修4-1:几何证明选讲 如图,是ABC的外接圆,D是的中点,BD 交AC于E (1)求证:: (2)若,O到AC的距离为1,求的半径
已知, (Ⅰ)当时,若在上为减函数,在上是增函数,求值; (Ⅱ)对任意恒成立,求的取值范围.
.已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点, ①若直线AB的斜率为,求四边形APBQ面积的最大值; ②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点. (Ⅰ)若,求证:平面PQB平面PAD; (Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.