在数列中,,.(1)求数列的前项和;(2)证明不等式,对任意皆成立。
如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=. (1)若N为线段PB的中点,求证:EN//平面ABCD; (2)求点到平面的距离.
已知数列的前n项和为,且,(=1,2,3…) (1)求数列的通项公式; (2)记,求.
已知向量,,且. (1)求的值; (2 )求的值.
已知关于的方程:. (1)当为何值时,方程C表示圆。 (2)若圆C与直线相交于M,N两点,且|MN|=,求的值。 (3)在(2)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由。
如图,是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的一动点. (1)证明:面PAC面PBC; (2)若,则当直线与平面所成角正切值为时,求直线与平面所成角的正弦值.