(本小题满分12分)已知向量,定义函数,求函数的最小正周期、单调递增区间.
(本小题满分12分)某港口海水的深度(米)是时间(时)()的函数,记为: 已知某日海水深度的数据如下:
经长期观察,的曲线可近似地看成函数的图象(1)试根据以上数据,求出函数的振幅A、最小正周期T和表达式;(2)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)?
(本小题满分12分)已知函数有最大值,试求实数的值.
(本小题满分12分)设函数. (1)写出的最大值M,最小值m,最小正周期T; (2)试求最小正整数k,使得当自变量x在任意两个整数间(包括整数本身)变化时,函数至少有一个值是M和一个值是m .
(本小题满分12分) 某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的。约定用有序实数对表示“甲在号车站下车,乙在号车站下车”。 (Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来; (Ⅱ)求甲、乙两人同在第3号车站下车的概率; (Ⅲ)求甲、乙两人在不同的车站下车的概率。
(本小题满分12分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5. (1)求第四小组的频率; (2)参加这次测试的学生人数是多少? (3)在这次测试中,学生跳绳次数的中位数落在第几小组内?