对于函数f(x),若存在,使得成立,则称为f(x)的不动点,已知函数(1)当时,求函数f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在⑵条件下,若图象上的A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线对称,求b 的最小值.
在中,,设,,,现定义. (Ⅰ)向量是否一定共线?为什么? (Ⅱ)试分别求函数的最大值与最小值.
如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积. (Ⅰ)求 的表达式; (Ⅱ)当x为何值时,取得最大值? (Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
在数列中,,. (Ⅰ)设.证明:数列是等差数列; (Ⅱ)求数列的前项和.
某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A、B ,且 AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20 秒后,航模直线航行到 D 处,测得 ∠BAD=90°和 ∠ABD=45°.请你根据以上条件求出航模的速度.(答案保留根号)
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (1)求该船的行驶速度(单位:海里/小时); (2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.