某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)从频率分布直方图中,估计本次考试成绩的中位数;(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
设二次函数满足下列条件:①当时,的最小值为,且图像关于直线对称;②当时,恒成立. (1)求的值; (2)求的解析式; (3)若在区间上恒有,求实数的取值范围.
已知函数(a>0,且a≠1),=. (1)函数的图象恒过定点A,求A点坐标; (2)若函数的图像过点(2,),证明:函数在(1,2)上有唯一的零点.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示. (1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式. (2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/百千克,时间单位:天)
已知函数,且对任意的实数都有成立. (1)求实数的值; (2)利用函数单调性的定义证明函数在区间上是增函数.
已知函数. (1)证明函数是偶函数; (2)在如图所示的平面直角坐标系中作出函数的图象.