某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成,,,,,六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)从频率分布直方图中,估计本次考试成绩的中位数;(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
“上海世博会”将于2010年5月1日至10月31日在上海举行。世博会“中国馆·贵宾厅”作为接待中外贵宾的重要场所,其中陈列的艺术品是体现兼容并蓄、海纳百川的重要文化载体,为此,上海世博会事物协调局将举办“中国2010年上海世博会‘中国馆·贵宾厅’艺术品方案征集”活动.某地美术馆从馆藏的中国画、书法、油画、陶艺作品中各选一件代表作参与应征,假设这四件代表作中中国画、书法、油画入选“中国馆·贵宾厅”的概率均为,陶艺入选“中国馆·贵宾厅”的概率为.假定这四件作品是否入选相互没有影响. (1)求该地美术馆选送的四件代表作中恰有一件作品入选“中国馆·贵宾厅”的概率; (2)设该地美术馆选送的四件代表作中入选“中国馆·贵宾厅”的作品件数为随机变量,求的数学期望.
已知向量. (1)求函数的最大值; (2)在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,且△ABC的面积为3,a的值.
己知. (Ⅰ)若,函数在其定义域内是增函数,求的取值范围; (Ⅱ)当时,证明函数只有一个零点; (Ⅲ)若的图象与轴交于两点,中点为,求证:.
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点. (Ⅰ)求椭圆的方程; (Ⅱ)是否存在直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
某商店投入38万元经销某种纪念品,经销期60天,为了获得更多的利润,商店将每天获得的利润投入到次日的经营中,市场调研表明,该商店在经销这一产品期间第天的利润(单位:万元,),记第天的利润率,例如 (Ⅰ)求的值; (Ⅱ)求第天的利润率; (Ⅲ)该商店在经销此纪品期间,哪一天的利润率最大?并求该天的利润率。