在中,的对边分别为,向量,. (Ⅰ)若向量,求满足的角的值;(Ⅱ)若,试用角表示角与;(Ⅲ)若,且,求的值.
已知公差不为0的等差数列的前n项和为,,且成等比数列. (1)求数列的通项公式; (2)设,求数列的前n项和.
已知函数. (1)求函数的最大值; (2)若直线是函数的对称轴,求实数的值.
已知函数的定义域为,且的图象连续不间断. 若函数满足:对于给定的(且),存在,使得,则称具有性质. (Ⅰ)已知函数,,判断是否具有性质,并说明理由; (Ⅱ)已知函数若具有性质,求的最大值; (Ⅲ)若函数的定义域为,且的图象连续不间断,又满足, 求证:对任意且,函数具有性质.
已知点,点为直线上的一个动点. (Ⅰ)求证:恒为锐角; (Ⅱ)若四边形为菱形,求的值.
已知函数. (Ⅰ)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图); (Ⅱ)求函数的单调递增区间; (Ⅲ)当时,求函数的最大值和最小值及相应的的值.