已知椭圆C:(a>b>0)的左准线恰为抛物线E:y2 = 16x的准线,直线l:x + 2y – 4 = 0与椭圆相切.(1)求椭圆C的方程;(2)如果椭圆C的左顶点为A,右焦点为F,过F的直线与椭圆C交于P、Q两点,直线AP、AQ与椭圆C的右准线分别交于N、M两点,求证:四边形MNPQ的对角线的交点是定点.
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足. (1)求证:; (2)在棱上确定一点,使、、、四点共面,并求此时的长; (3)求几何体的体积.
已知函数的图象经过点. (1)求实数的值; (2)求函数的最小正周期与单调递增区间.
已知某种同型号的瓶饮料中有瓶已过了保质期. (1)从瓶饮料中任意抽取瓶,求抽到没过保质期的饮料的概率; (2)从瓶饮料中随机抽取瓶,求抽到已过保质期的饮料的概率.
已知函数(其中为自然对数的底数). (1)求函数的单调区间; (2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数在上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足. (1)求实数的值; (2)证明:直线与直线的斜率之积是定值; (3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.