(本大题共14分)一袋中装有分别标记着1,2,3,4数字的4只小球,每次从袋中取出一只球,设每只小球被取到的可能性相同.(1)若每次取出的球不放回袋中,求恰好第三次取到标号为3的球的概率;(2)若每次取出的球放回袋中,然后再取出一只球,现连续取三次球,若三次取出的球中标号最大的数字为,求的概率分布列与期望.
已知的三个内角成等差数列,它们的对边分别为,且满足,. (1)求; (2)求的面积.
已知函数. (1)求的最小正周期; (2)设,且,求.
已知向量,,,. (1)求与的夹角; (2)若,求实数的值.
如图,矩形的顶点为原点,边所在直线的方程为,顶点的纵坐标为. (1)求边所在直线的方程; (2)求矩形的面积.
设R,函数. (1)若x=2是函数y=f(x)的极值点,求实数a的值; (2)若函数在区间[0,2]上是减函数,求实数a的取值范围.