(本大题共14分)已知数列的前n项和,且是与1的等差中项.(1)求数列和数列的通项公式;(2)若,求;(3)若,是否存在使得,并说明理由.
在中,边、、分别是角、、的对边,且满足.(Ⅰ)求;(Ⅱ)若,,求边,的值.
已知圆圆动圆与圆外切并与圆内切,圆心的轨迹为曲线.(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.
设等差数列的前项和为,且,.(1)求数列的通项公式;(2)设数列满足 ,求的通项公式;(3)求数列前 项和.
已知函数(1)讨论函数的单调区间;(2)已知对定义域内的任意恒成立,求实数的取值范围.
如图,在四棱锥中,,,, ,,和分别是和的中点.(1)求证: 底面;(2)求证:平面平面;(3)求三棱锥的体积.