(本小题满分14分)已知函数在(0,+)上是增函数,在[–1,0]上是减函数,且方程有三个根,它们分别为α,–1,β.(1)求c的值;(2)求证:;(3)求|α–β|的取值范围.
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1. (1)试求常数a、b、c的值; (2)试判断x=±1是函数的极小值还是极大值,并说明理由.
已知正数成等差数列,且公差,用反证法求证:不可能是等差数列。
已知,且,用分析法求证:.
观察以下各等式:, 分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性利用综合法作出证明.
设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点. (1)求a和b的值; (2)求f(x)的单调区间.