(本小题满分16分)已知F1(-c,0), F2(c,0) (c>0)是椭圆的两个焦点,O为坐标原点,圆M的方程是.(1)若P是圆M上的任意一点,求证:是定值;(2)若椭圆经过圆上一点Q,且cos∠F1QF2=,求椭圆的离心率;(3)在(2)的条件下,若|OQ|=,求椭圆的方程.
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1. (Ⅰ)求证:AF⊥平面CBF; (Ⅱ)设FC的中点为M,求证:OM∥平面DAF; (Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求.
某高校在2012年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示. (1)求第三、四、五组的频率; (2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试. (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
已知函数. (1)求函数的最小正周期、最大值及取最大值时自变量的取值集合; (2)在△ABC中,角A,B,C的对边分别是a,b,c;若a,b,c成等比数列,且,求的值.
设函数. (1)若时,解不等式; (2)若函数有最小值,求a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:,过点P(-2,-4)的直线的参数方程为(t为参数)与C分别交于M,N. (1)写出C的平面直角坐标系方程和的普通方程; (2)若,,成等比数列,求a 的值.