(本小题满分16分)已知⊙由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足 (1)求实数a,b间满足的等量关系;(2)求线段PQ长的最小值;(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程。
(本小题满分14分)设平面向量=,,,. (1)若,求的值; (2)若,求函数的最大值,并求出相应的值.
选修4-5:不等式选讲 设函数. (Ⅰ)当a=5时,求函数f(x)的定义域; (Ⅱ)若函数f(x)的定义域为R,试求a的取值范围.
选修4-4:坐标系与参数方程 已知曲线C的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角 坐标系,设直线l的参数方程为(t为参数). (Ⅰ)求曲线C的直角坐标方程与直线l的普通方程; (Ⅱ)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.
已知函数. (Ⅰ)当a=1时,求曲线y=f(x0在x=1处的切线方程; (Ⅱ)求函数f(x)在区间上的最小值; (Ⅲ)若关于的方程在区间内有两个不相等的实数根,求实数a的取值范围.
已知椭圆(a>b>0)的两个焦点分别为,离心率为,过的直线l与椭圆C交于M,N两点,且的周长为8. (Ⅰ)求椭圆C的方程; (Ⅱ)过原点O的两条互相垂直的射线与椭圆C分别交于A,B两点,证明:点O到直线AB的距离为定值,并求出这个定值.