(本题满分16满分)设A、B分别为椭圆(a>b>0)的左右顶点,P为直线x=u上不同于(u,0)的任一点,若直线AP、BP分别与椭圆交于异于A、B的点M、N,研究点B与以MN为直径的圆的位置关系.
如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点. (Ⅰ)若,求证:平面PQB平面PAD; (Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
在中,角对的边分别为,已知. (Ⅰ)若,求的取值范围; (Ⅱ)若,求面积的最大值.
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,. (1)求抛物线的方程; (2)设点是抛物线上的两点,的角平分线与轴垂直,求的面积最大时直线的方程.
已知函数 (1)若是的极值点,求的极大值; (2)求实数的范围,使得恒成立.
已知正项数列满足:,数列的前项和为,且满足,. (1) 求数列和的通项公式; (2)设,数列的前项和为,求证:.