(本题满分14分)在梯形ABCD中,AB⊥AD,AB∥CD,A、B是两个定点,其坐标分别为(0,-1)、(0,1),C、D是两个动点,且满足|CD|=|BC|.(1)求动点C的轨迹E的方程;(2)试探究在轨迹E上是否存在一点P?使得P到直线y=x-2的距离最短;(3)设轨迹E与直线所围成的图形的面积为S,试求S的最大值。其它解法请参照给分。
(本题满分12分) 已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),交椭圆于A、B两个不同点。 (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与x轴始终围成一个等腰三角形.
(本题满分12分) 已知a∈R,函数f(x)=4x3-2ax+a. (1)求f(x)的单调区间; (2)证明:当0≤x≤1时,f(x)+|2-a|>0.
如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD. (1)证明:PQ⊥平面DCQ; (2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.
今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表: 性别与对景区的服务是否满意 单位:名
(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名? (2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率; (3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关 注: 临界值表:
在△中,角的对边分别为,已知,且,, 求: (1)(2)△的面积.