(本小题满分12分)已知数列{an}的前n项和为Sn, 且满足条件:4S n =+ 4n – 1 , nÎN*. (1) 证明:(a n– 2)2 –="0" (n ³ 2);(2) 满足条件的数列不惟一,试至少求出数列{an}的的3个不同的通项公式 .
设函数 (Ⅰ)若,解不等式; (Ⅱ)若函数有最小值,求实数的取值范围.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为. (Ⅰ)求曲线的直角坐标方程; (Ⅱ)设直线与曲线相交于,两点,求,两点间的距离.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点. (Ⅰ)求证:△≌△; (Ⅱ)若,求长.
设函数 (Ⅰ)时,求的单调区间; (Ⅱ)当时,设的最小值为恒成立,求实数t的取值范围.
在平面直角坐标系中,设点,坐标原点在以线段为直径的圆上 (Ⅰ)求动点的轨迹C的方程; (Ⅱ)过点的直线与轨迹C交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.