(本小题满分14分)已知椭圆以 为焦点,且离心率.(Ⅰ)求椭圆的方程;(Ⅱ)过点斜率为的直线与椭圆有两个不同交点,求的范围。(Ⅲ)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在直线,满足(Ⅱ)中的条件且使得向量与垂直?如果存在,写出的方程;如果不存在,请说明理由。
已知为半圆的直径,,为半圆上一点,过点圆的切线,过点作于,交半圆于点. (1)证明:平分; (2)求的长.
设函数. (1)求函数的单调区间; (2)若,求证:.
在如图所示的圆锥中,是圆锥的高,是底面圆的直径,点是弧的中点,是线段的中点,是线段上一点,且,. (1)若为的中点,试在上确定一点,使得面,并说明理由; (2)若,求直线与面所成角的正弦值.
已知数列满足. (1)求证:为等比数列,并求出的通项公式; (2)若,求的前n项和.
已知函数. (1)若曲线在点处的切线方程为,求的值; (2)若,且在上单调递增,求实数的取值范围.