已知函数在处取得极值,其中为常数,(1)试确定的值;(2)讨论函数的单调区间;
.(本小题满分13分)在等比数列中,已知,.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。
设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;
某射手每次射击击中目标的概率是,且各次射击的结果互不影响。(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。
如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点.(Ⅰ)求证:⊥平面;(Ⅱ)求二面角的余弦值.