椭圆C:的两个焦点分别为 ,是椭圆上一点,且满足。(1)求离心率e的取值范围;(2)当离心率e取得最小值时,点N( 0 , 3 )到椭圆上的点的最远距离为。(i)求此时椭圆C的方程;(ii)设斜率为的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,)、Q的直线对称?若能,求出的取值范围;若不能,请说明理由。
(本小题满分12分) 打鼾不仅影响别人休息,而且可能与患某种疾病有关,下表是一次调查所得数据,试问:每一晚都打鼾与患心脏病有关系吗?有多大把握认为你的结论成立?
本小题满分12分) 已知复数,若 (1)求;(2)求实数的值
(本小题满分14分) 在平面直角坐标系中,已知椭圆过点,且椭圆的离心率为. (1)求椭圆的方程; (2)是否存在以为直角顶点且内接于椭圆的等腰直角三角形?若存在,求出共有几个;若不存在,请说明理由.
(本小题满分14分) 广州市为了做好新一轮文明城市创建工作,有关部门为了解市民对《广州市创建全国文明城市小知识》的熟知程度,对下面两个问题进行了调查: 问题一:《广州市民“十不”行为规范》有哪“十不”? 问题二:广州市“一约三则”的内容是什么? 调查结果显示,年龄段的市民回答第一个问题的正确率为,年龄段的市民回答第二个问题正确率为. 为使活动得到市民更好的配合,调查单位采取如下激励措施:正确回答问题一者奖励价值20元的礼物;正确回答问题二奖励价值30元的礼物,有一家庭的两成员(大人42岁,孩子13岁)参与了此项活动,小孩回答第一个问题,大人回答第二个问题,问这个家庭获得礼物价值的数学期望是多少?
(本小题满分14分)如图,已知四棱锥的底面是矩形,、分别是、的中点,底面,, (1)求证:平面 (2)求二面角的余弦值