椭圆C:的两个焦点分别为 ,是椭圆上一点,且满足。(1)求离心率e的取值范围;(2)当离心率e取得最小值时,点N( 0 , 3 )到椭圆上的点的最远距离为。(i)求此时椭圆C的方程;(ii)设斜率为的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,)、Q的直线对称?若能,求出的取值范围;若不能,请说明理由。
据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:
态度
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05. (Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人? (Ⅱ)已知y≥657,z≥55,求本次调查“失效”的概率.
已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)已知,求数列{bn}的前n项和.
已知向量a=,b=,设函数=ab. (Ⅰ)求的单调递增区间; (Ⅱ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
已知函数. (Ⅰ)若是上是增函数,求实数a的取值范围; (Ⅱ)证明:当a≥1时,证明不等式≤x+1对x∈R恒成立; (Ⅲ)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.
已知椭圆C的两个焦点是(0,-)和(0,),并且经过点,抛物线E的顶点在坐标原点,焦点F恰好是椭圆C的右顶点. (Ⅰ)求椭圆C和抛物线E的标准方程; (Ⅱ)过点F作两条斜率都存在且互相垂直的直线l1、l2,l1交抛物线E于点A、B,l2交抛物线E于点G、H,求的最小值.