在锐角三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,且⑴若,求A、B、C的大小;⑵)已知向量的取值范围.
如图所示,已知椭圆=1(a>b>0)的右焦点为F2(1,0),点A在椭圆上.(1)求椭圆方程;(2)点M(x0,y0)在圆x2+y2=b2上,点M在第一象限,过点M作圆x2+y2=b2的切线交椭圆于P、Q两点,问||+||+||是否为定值?如果是,求出该定值;如果不是,说明理由.
已知圆C的方程为:x2+y2-2mx-2y+4m-4=0.(m∈R).(1)试求m的值,使圆C的面积最小;(2)求与满足(1)中条件的圆C相切,且过点(1,-2)的直线方程.
已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.(1)证明:PF⊥FD;(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角线的正方形)如图,E是侧棱PC的中点.(1)求四棱锥P-ABCD的体积;(2)求证:平面APC⊥平面BDE.