已知 f x = x 2 + b x + c 为偶函数,曲线 y = f x 过点 2 , 5 , g x = x + a f x . (Ⅰ)求曲线 y = g x 有斜率为0的切线,求实数 a 的取值范围; (Ⅱ)若当 x = - 1 时函数 y = g x 取得极值,确定 y = g x 的单调区间.
ΔABC中,,. (1)求证:; (2)若a、b、c分别是角A、B、C的对边,,求c和ΔABC的面积.
已知m为常数,函数为奇函数. (1)求m的值; (2)若,试判断的单调性(不需证明); (3)若,存在,使,求实数k的最大值.
已知向量,,,点A、B为函数的相邻两个零点,AB=π. (1)求的值; (2)若,,求的值; (3)求在区间上的单调递减区间.
已知函数. (1)当时,画出函数的简图,并指出的单调递减区间; (2)若函数有4个零点,求a的取值范围.
如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形. (1)当正视图方向与向量的方向相同时,画出三棱锥A—BCD的三视图;(要求标出尺寸) (2)求二面角B—AC—D的余弦值; (3)在线段AC上是否存在一点E,使ED与平面BCD成30°角? 若存在,确定点E的位置;若不存在,说明理由.