(本小题满分12分)已知是定义在上的奇函数,且,若,,时,有成立.(1)判断在上的单调性,并证明;(2)解不等式:;(3)若对所有的恒成立,求实数的取值范围.
斜率为2的直线经过抛物线的焦点,且与抛物线相交于两点,求线段的长。
已知函数. (1)求函数的单调区间; (2)若,试求函数在此区间上的最大值与最小值.
求双曲线的实轴长、虚轴长、焦点坐标、离心率、渐近线方程。
(1).已知抛物线的焦点是,求它的标准方程; (2).已知椭圆的长轴长是短轴长的3倍,且经过点,求椭圆的标准方程; (3).已知双曲线两个焦点分别为,,双曲线上一点到,的距离差的绝对值等于8, 求双曲线的方程.
如图,线段AB的两个端点A、B分别在x轴,y轴上滑动,,点M是线段AB上一点,且点M随线段AB的滑动而运动. (I)求动点M的轨迹E的方程 (II)过定点N的直线交曲线E于C、D两点,交y轴于点P,若的值