(本小题满分12分)已知是定义在上的奇函数,且,若,,时,有成立.(1)判断在上的单调性,并证明;(2)解不等式:;(3)若对所有的恒成立,求实数的取值范围.
【改编题】在△ABC中,己知 ,,又△ABC的面积为6(Ⅰ)求△ABC的三边长;(Ⅱ)若D为BC边上的一点,且CD=1,求 .
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).(Ⅰ)求椭圆的方程;(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
已知圆的圆心在直线上,且与轴交于两点,.(Ⅰ)求圆的方程;(Ⅱ)求过点的圆的切线方程;(Ⅲ)已知,点在圆上运动,求以,为一组邻边的平行四边形的另一个顶点轨迹方程.
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面.(Ⅰ)求证:平面平面;(Ⅱ)求四棱锥的体积.
已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.