(本小题满分12分)为了解决西部地区某希望小学的师生饮水问题,中原名校联谊会准备援建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池底面半径为米,高米,体积为立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).(1)将表示成的函数,并求函数的定义域;(2)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大.
已知椭圆上的点到其两焦点距离之和为,且过点.(Ⅰ)求椭圆方程;(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,,若,求△的面积.
数列记(1)求b1、b2、b3、b4的值;(2)求数列的通项公式及数列的前n项和
在中,分别是角A,B,C的对边,且满足.(1)求角B的大小;(2)若最大边的边长为,且,求最小边长.
已知椭圆C的焦点分别为和,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标.
已知命题:“不等式对任意恒成立”,命题:“方程表示焦点在x轴上的椭圆”,若为真命题,为真,求实数的取值范围.