已知以原点 O 为中心的双曲线的一条准线方程为 x = 5 5 ,离心率 e = 5 .
(Ⅰ)求该双曲线的方程; (Ⅱ)如图,点 A 的坐标为 ( - 5 , 0 ) , B 是圆 x 2 + ( y - 5 ) 2 = 1 上的点,点 M 在双曲线右支上,求 M A + M B 的最小值,并求此时 M 点的坐标.
已知函数.(Ⅰ)若函数在区间上存在极值,求实数的取值范围;(Ⅱ)如果当时,不等式恒成立,求实数的取值范围.
已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大.
如图,在四棱锥中,四边形是菱形,,E为PB的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.
已知函数.(Ⅰ)求函数最大值和最小正周期;(Ⅱ)设的内角的对边分别为,且,若,求的值
若均为正实数,并且,求证: