在 ∆ A B C 中, sin C - A = 1 , sin B = 1 3 .
(1)求 sin A 的值;
(2)设 A C = 6 ,求 ∆ A B C 的面积.
己知函数f(x)=+blnx+c(a>0)的图像在点(1,f(1))处的切线方程为x-y-2=0 (1)用a表示b,c; (2)若函数g(x)=x-f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.
已知数列{an}的前n项和为Sn,若Sn=2an+n,且bn=. (1)求数列{an}的通项公式; (2)求数列{bn}的前n项和Tn.
设△ABC的三个内角A,B,C所对的边长分别为a,b,c.平面向量= (cosA,cosC),=(c,a),=(2b,0),且·(-)=0 (1)求角A的大小; (2)当|x|≤A时,求函数f(x)=sinxcosx+sinxsin(x-)的值域.
设命题p:|2x-3|<1;命题q:lg2x-(2t+l)lgx+t(t+l)≤0, (1)若命题q所表示不等式的解集为A={x|l0≤x≤100},求实数t的值; (2)若p是q的必要不充分条件,求实数t的取值范围.
已知函数. (Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)设函数,求函数的单调区间; (Ⅲ)若,在上存在一点,使得成立,求的取值范围.