高考数学考前复习冲刺穿插滚动练习(一)
已知集合A={y|y=2x,x∈R},则∁RA等于 ( )
A.∅ | B.(-∞,0] |
C.(0,+∞) | D.R |
已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为 ( )
A.1或-1或0 | B.-1 |
C.1或-1 | D.0 |
已知a>1,f(x)=a,则使f(x)<1成立的一个充分不必要条件是( )
A.﹣1<x<0 | B.﹣2<x<1 | C.﹣2<x<0 | D.0<x<1 |
设a=log54,b=(log53)2,c=log45,则 ( )
A.a<c<b | B.b<c<a |
C.a<b<c | D.b<a<c |
命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},下述判断:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中正确的个数为 ( )
A.2 | B.3 | C.4 | D.5 |
已知函数y=ax2+bx+c(a≠0)的图象经过(-1,3)和(1,1)两点,若0<c<1,则a的取值范围是 ( )
A.(1,3) | B.(1,2) |
C.[2,3) | D.[1,3] |
已知f(x)=ax-2,g(x)=loga|x|(a>0,且a≠1),且f(2 011)·g(-2 011)<0,则y=f(x),y=g(x)在同一坐标系内的大致图象是 ( )
设f(x)是定义在实数集R上的函数,满足条件y=f(x+1)是偶函数,且当x≥1时,f(x)=()x-1,则f(),f(),f()的大小关系是 ( )
A.f()>f()>f() |
B.f()>f()>f() |
C.f()>f()>f() |
D.f()>f()>f() |
先作函数y=lg的图象关于原点对称的图象,再将所得图象向右平移一个单位得图象C1,函数y=f(x)的图象C2与C1关于直线y=x对称,则函数y=f(x)的解析式为( )
A.y=10x | B.y=10x-2 |
C.y=lg x | D.y=lg(x-2) |
若函数y=f(x)在R上可导,且满足不等式xf′(x)>-f(x)恒成立,且常数a,b满足a>b,则下列不等式一定成立的是 ( )
A.af(b)>bf(a) | B.af(a)>bf(b) |
C.af(a)<bf(b) | D.af(b)<bf(a) |
设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)( )
A.有极大值,无极小值 |
B.有极小值,无极大值 |
C.既有极大值又有极小值 |
D.既无极大值也无极小值 |
设f(x)=-x3+x2+2ax,若f(x)在(,+∞)上存在单调递增区间,则a的取值范围为________.
方程x2+(2m-1)x+4-2m=0的一根大于2,一根小于2,那么实数m的取值范围是__________.
函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,的取值范围为________.
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;
②x=-4为函数y=f(x)图象的一条对称轴;
③函数y=f(x)在[8,10]上单调递增;
④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.
以上命题中所有正确命题的序号为________.
设集合A={x|x2<4},B={x|1<}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为B,求a,b的值.
已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求f(x)的解析式;
(2)若g(x)=f(x)·x+ax,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.
若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.
已知函数f(x)=xk+b(其中k,b∈R且k,b为常数)的图象经过A(4,2)、B(16,4)两点.
(1)求f(x)的解析式;
(2)如果函数g(x)与f(x)的图象关于直线y=x对称,解关于x的不等式:g(x)+g(x-2)>2a(x-2)+4.
某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.