[北京]2013届北京市海淀区高三5月期末练习(二模)理科数学试卷
如图,在边长为的正方形内有不规则图形. 向正方形内随机撒豆子,若撒在图形内和正方形内的豆子数分别为,则图形面积的估计值为( )
A. | B. | C. | D. |
某空间几何体的三视图如右图所示,则该几何体的表面积为( )
A.180 | B.240 | C.276 | D.300 |
在四边形中,“,使得”是“四边形为平行四边形”的( )
A.充分而不必要条件 | B.必要而不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( )
A. | B. | C. | D. |
双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为( )
A. | B. | C. | D. |
若数列满足:存在正整数,对于任意正整数都有成立,则称数列为周期数列,周期为. 已知数列满足,
则下列结论中错误的是( )
A.若,则可以取3个不同的值 |
B.若,则数列是周期为的数列 |
C.且,存在,是周期为的数列 |
D.且,数列是周期数列 |
在平面直角坐标系中,动点到两条坐标轴的距离之和等于它到点的距离,记点的轨迹为曲线.
(I) 给出下列三个结论:
①曲线关于原点对称;
②曲线关于直线对称;
③曲线与轴非负半轴,轴非负半轴围成的封闭图形的面积小于;
其中,所有正确结论的序号是_____;
(Ⅱ)曲线上的点到原点距离的最小值为______.
福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为,获得50元奖金的概率为.
(I)假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率;
(II)为了能够筹得资金资助福利事业, 求的取值范围.
如图1,在直角梯形中,,,,
. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.
(I)求证:平面平面;
(II)求直线与平面所成角的正弦值;
(III)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.
已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(I)当时,求函数的单调区间;
(II)当时, 若,使得, 求实数的取值范围.
已知椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆的方程;
(II)直线与椭圆交于,两点,且线段的垂直平分线经过点,求(为原点)面积的最大值.
设是由个实数组成的行列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.
(Ⅰ) 数表如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);
表1
1 |
2 |
3 |
|
1 |
0 |
1 |
(Ⅱ) 数表如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数的所有可能值;
表2
(Ⅲ)对由个实数组成的行列的任意一个数表,能否经过有限次“操作”以后,使得到的数表每行的各数之和与每列的各数之和均为非负整数?请说明理由.