吉林省吉林市高三第三次模拟考试理科数学试卷
已知随机变量ξ服从正态分布N(1,σ2),若P(ξ>3)=0.023,则P(-1≤ξ≤3)等于( )
A.0.977 | B.0.954 | C.0.628 | D.0.477 |
现有三个函数:①,②,③的图象(部分)如下:
则按照从左到右图象对应的函数序号安排正确的一组是( )
A.①②③ | B.③①② | C.②①③ | D.③②① |
边长为4的正方形ABCD的中心为O,以O为圆心,1为半径作圆,点M是圆O上的任意一点,
点N是边AB、BC、CD上的任意一点(含端点),则的取值范围是( )
A. B. C. D.
已知边长为1的等边三角形与正方形有一公共边,二面角的余弦
值为,若A、B、C、D、E在同一球面上,则此球的体积为( )
A. B. C. D.
若存在直线l与曲线和曲线都相切,则称曲线和曲线为“相关曲线”,有下列四个命
题:
①有且只有两条直线l使得曲线和曲线为“相关曲线”;
②曲线和曲线是“相关曲线”;
③当时,曲线和曲线一定不是“相关曲线”;
④必存在正数使得曲线和曲线为“相关曲线”.
其中正确命题的个数为( )
A.1 | B.2 | C.3 | D.4 |
从5名志愿者中选出4人,分别参加两项公益活动,每项活动2人,则不同安排方案的种数
为 .(用数字作答)
已知直线与抛物线交于A,B两点,点P为直线l上一动点,M,N是抛物线C上两个动点,若,, 则△PMN的面积的最大值为 .
(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足.
(Ⅰ)求B;
(Ⅱ)若,设,,求函数的解析式和最大值.
(本小题满分12分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体
1000名学生中随机抽取了若干名学生的体检表,并得到如下直方图:
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的
人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有
关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
年级名次 是否近视 |
1~50 |
951~1000 |
近视 |
41 |
32 |
不近视 |
9 |
18 |
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良
好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求的分布列和数学期
望.
附:
P(K2≥k) |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
(本小题满分12分)如图,在多面体ABCDEF中,正方形与梯形所在平面互相
垂直,已知,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成的角的正弦值.
(本小题满分12分)已知椭圆的左、右焦点分别为、
,过的直线l与椭圆C相交于A,B两点,且△的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作与直线l平行的直线m,且直线m与抛物线交于P、Q两点,若A、P在x轴
上方,直线PA与直线QB相交于x轴上一点M,求直线l的方程.
(本小题满分12分)设函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)如果对所有的≥0,都有≤,求的最小值;
(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:
.
(本小题满分10分)选修4—1:几何证明选讲
如图,在△ABC中,,以为直径的⊙O交于,过点作⊙O的切线交于,
交⊙O于点.
(Ⅰ)证明:是的中点;
(Ⅱ)证明:.
(本小题满分10分)选修4—4:坐标系与参数方程
在极坐标系中曲线的极坐标方程为,点. 以极点O为原点,以极轴为x
轴正半轴建立直角坐标系.斜率为的直线l过点M,且与曲线C交于A,B两点.
(Ⅰ)求出曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)求点M到A,B两点的距离之积.