四川省资阳市高三第三次模拟考试理科数学试卷
下列说法中,正确的是( )
A., |
B.命题p:,,则:, |
C.在△ABC中,“”是“△ABC为锐角三角形”的必要不充分条件 |
D.已知,则“”是“”成立的充分不必要条件 |
已知函数(,,)的部分图象如图所示,下列说法正确的是( )
A.的图象关于直线对称 |
B.的图象关于点对称 |
C.将函数的图象向左平移个单位得到函数的图象 |
D.若方程在上有两个不相等的实数根,则m的取值范围是 |
现有12张不同的卡片,其中红色、黄色、绿色、蓝色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且蓝色卡片至多1张. 则不同的取法共有( )
A.135 | B.172 | C.189 | D.216 |
如图,已知双曲线的左、右焦点分别为F1、F2,|F1F2|=8,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为( )
A. | B. |
C.2 | D.3 |
设m是一个非负整数,m的个位数记作,如,,,称这样的函数为尾数函数.给出下列有关尾数函数的结论:
①;
②,若,都有;
③;
④.
则正确的结论的个数为( )
A.1 | B.2 | C.3 | D.4 |
如图1,已知点E、F、G分别是棱长为a的正方体ABCD-A1 B1Cl D1的棱AA1、BB1、DD1的中点,点M、N、P、Q分别在线段AG、 CF、BE、C1D1上运动,当以M、N、P、Q为顶点的三棱锥Q-PMN的俯视图是如图2所示的正方形时,则点P到QMN的距离为__________.
已知8个非零实数a1,a2,a3,a4,a5,a6,a7,a8,向量,,,,给出下列命题:
①若a1,a2,…,a8为等差数列,则存在,使+++与向量共线;
②若a1,a2,…,a8为公差不为0的等差数列,向量,,,则集合M的元素有12个;
③若a1,a2,…,a8为等比数列,则对任意,都有∥;
④若a1,a2,…,a8为等比数列,则存在,使·<0;
⑤若m=·,则m的值中至少有一个不小于0.
其中所有真命题的序号是________________.
(本小题满分12分)某校学生会进行了一次关于“消防安全”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,团委会对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调查结果统计如下表:
年龄(岁) |
[10,20) |
[20,30) |
[30,40) |
[40,50) |
[50,60) |
[60,70] |
频数 |
m |
n |
15 |
10 |
7 |
3 |
知道的人数 |
4 |
6 |
12 |
6 |
3 |
2 |
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.
(Ⅰ)求上表中的m,n值,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人知道灭火器使用方法的概率;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取2人参加消防知识讲座,记选中的4人中不知道灭火器使用方法的人数为,求随机变量的分布列和数学期望.
(本小题满分12分)已知向量,,函数.
(Ⅰ)求在区间上的零点;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c, ,△ABC的面积,当x=A时,函数取得极大值,求的值.
(本小题满分12分)已知数列{an},{bn}满足:a1b1+a2b2+a3b3+…+anbn=().
(Ⅰ)若{bn }是首项为1,公比为2的等比数列,求数列{an}的前n项和Sn;
(Ⅱ)若{an}是等差数列,且an≠0,问:{bn}是否是等比数列?若是,求{an}和{bn}的通项公式;若不是,请说明理由.
(本小题满分12分)如图,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,,∠A1AB=120°,D、E分别是BC、A1C1的中点.
(Ⅰ)试在棱AB上找一点F,使DE∥平面A1CF;
(Ⅱ)在(Ⅰ)的条件下,求二面角A-A1C-F的余弦值.
(本小题满分13分)已知动点P到定点的距离和它到定直线的距离的比值为.
(Ⅰ)求动点P的轨迹W的方程;
(Ⅱ)若过点F的直线与点P的轨迹W相交于M,N两点(M,N均在y轴右侧),点、,设A,B,M,N四点构成的四边形的面积为S,求S的取值范围.