湖南省怀化市中小学课改质量检测高三第一次模考理科数学试卷
将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一
个可能取值为
A. | B. | C.0 | D. |
设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:
①⊥,∥,则⊥;
②若⊥,⊥,则∥;
③若∥,∥, ⊥,则⊥;
④若,=,∥ ,则∥.
其中正确命题的序号是
A.①和③ | B.②和③ | C.③和④ | D.①和④ |
若执行右边的程序框图,输出的值为4,则判断框中应填入的条件是
A. | B. | C. | D. |
已知双曲线, 、是实轴顶点,是右焦点,是虚轴端点,若在线段上(不含端点)存在不同的两点使得构成以为斜边的直角三角形,则双曲线离心率的取值范围是
A. | B. |
C. | D. |
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.若曲线的参数方程为(为参数),曲线的极坐标方程为.则曲线与曲线的交点个数为 个.
(本小题满分12分)已知向量,,函数.
(Ⅰ)求函数f (x)的最小正周期和单调递减区间;
(Ⅱ)在中,,,分别是角,,的对边,且,,的面积为,且a > b,求的值.
(本小题满分12分)某校为进行爱国主义教育,在全校组织了一次有关钓鱼岛历史知识的竞赛.现有甲、乙两队参加钓鱼岛知识竞赛,每队3人,规定每人回答一个问题,答对为本队赢得1分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人回答正确与否相互之间没有影响,用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用表示“甲、乙两个队总得分之和等于3”这一事件,用表示“甲队总得分大于乙队总得分” 这一事件,求.
(本小题满分12分)如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求证:平面;
(Ⅱ)求出该几何体的体积;
(Ⅲ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置;若不存在,请说明理由.
(本小题满分13分)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出 名员工从事第三产业,调整后他们平均每人每年创造利润为万元,剩下的员工平均每人每年创造的利润可以提高.
(Ⅰ)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(Ⅱ)在(Ⅰ)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则的取值范围是多少?
已知圆的公共点的轨迹为曲线,且曲线与轴的正半轴相交于点.若曲线上相异两点、满足直线,的斜率之积为.
(Ⅰ)求的方程;
(Ⅱ)证明直线恒过定点,并求定点的坐标;
(Ⅲ)求的面积的最大值.