设甲、乙两位同学上学期间,每天7:30之前到校的概率均为 .假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量 的分布列和数学期望;
(Ⅱ)设 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件 发生的概率.
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
|
支付金额 支付方式 |
不大于 元 |
大于 元 |
|
仅使用A |
27人 |
3人 |
|
仅使用B |
24人 |
1人 |
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于 元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于 元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于 元的人数有变化?说明理由.
在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1 , A 2 , A 3 , A 4 , A 5 , A 6和4名女志愿者B 1 , B 2 , B 3 , B 4 , 从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
(Ⅰ)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率.
(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.
从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是( )
| A. |
|
B. |
|
C. |
|
D. |
|
在平面直角坐标系xOy中,设点集
,
令 .从集合 M n中任取两个不同的点,用随机变量 X表示它们之间的距离.
(1)当 n=1时,求 X的概率分布;
(2)对给定的正整数 n( n≥3),求概率 P( X≤ n)(用 n表示).
从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.
已知随机变量X服从正态分布N(2,σ2),P(0<X<4)=0.8,则P(X>4)的值等于()
| A.0.1 | B.0.2 | C.0.4 | D.0.6 |
从
个同类产品(其中
个是正品,
个是次品)中任意抽取
个的必然事件是()
A. 个都是正品 |
B.至少有 个是次品 |
C. 个都是次品 |
D.至少有 个是正品 |
袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是()
| A.“至少有一个黑球”和“没有黑球” |
| B.“至少有一个白球”和“至少有一个红球” |
| C.“至少有一个白球”和“红球黑球各有一个” |
| D.“恰有一个白球”和“恰有一个黑球” |
甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,则它们中的任意一艘都不需要等待码头空出的概率 .