如图为“探究电流通过导体产生的热量与 关系的实验”装置。若把电路接在6V的电源上,工作3min,则A容器中的电阻产生的热量为 J;实验后小明取出装置中的电阻,发现两电阻长度和材料相同, 容器中电阻的横截面积较大。
如图甲所示,电源电压恒定不变, ,开关 闭合,的示数为 ,电流表的示数如图乙所示,则 的功率为 ;通电 , 产生的热量为 。
家庭电路中,电风扇和照明灯是 (填“串联”或“并联”)的,用久后扇叶上沾满灰尘,是由于带电体具有 的性质。电炉丝热得发红,而与之相连的导线却几乎不发热,根据焦耳定律可知,是因为电炉丝的 大。
如图所示,是探索焦耳定律的实验装置,已知 ,闭合开关后,通过两端电阻丝的电流 ,电阻丝两端的电压 。
如图所示,定值电阻R1=10Ω,滑动变阻器R2的最大阻值为20Ω,电源电压恒为6V,当S闭合滑片P在某位置时,电压表示数为3V,则:此时滑动变阻器连入电路的阻值是 Ω;通电10s后R1产生的热量是 J.当滑片P滑至最右端时,电路消耗的总功率为 W。
图甲是用来探究“电流通过导体产生热量多少与电流大小关系”的实验装置,装置中R1、R2的阻值应 (填“相等”或“不相等”)。若R1=10Ω,R2=5Ω,实验时通过R2的电流为2A,1min内电流通过R2产生的热量为 J;只将R1和R2连入如图乙所示装置,在相同时间里,电流通过R1和R2产生的热量之比为 。
将“ ”的灯泡 和“ ”的灯泡 ,按图甲电路连接,闭合开关, 和 均正常发光,则电路的总电阻 .若改接在图乙电路中,闭合开关, 正常发光,则电源2的电压 ,如果通电 ,灯泡 产生的热量 (假设灯丝电阻不变)。
1820年,丹麦物理学家 在课堂上做实验时发现了电流的磁效应,电流也具有热效应,20年后的1840年,英国物理学家焦耳最先精确地确定了电流产生的热量跟电流、电阻和 的关系,家用电风扇工作时,电动机同时也要发热,一台标明“ ”的电风扇正常工作10分钟,电流产生的热量为 (已知电动机线圈电阻为 。
电炉丝通过导线接到电路里,通过电炉丝和导线的电流大小 ,由于电炉丝的电阻比导线的电阻大,导致电炉丝产生的热量比导线产生的热量 。
如图所示的装置,用来探究通电时间相同时,电流产生的热量与 (选填“电阻”或“电流”)的关系,若电路中的干路电流为1A,则1min内电流通过R1产生的热量为 J;R1产生的热量比R2产生的热量 (选填“多”或“少”)。
如图甲所示,电源为电压可调的学生电源,定值电阻R的阻值为10Ω,图乙是电流表示数随电源电压变化的I﹣U图象。闭合开关S,电源电压为1V时,电流表的示数为 A;闭合开关S,电源电压为2V时,小灯泡的实际电功率为 W,通电时间10s,电阻R产生的热量为 J。
如图所示,电源电压恒定, 、 为定值电阻, ,灯泡 标有“ ”字样。
(1)当 、 、 都闭合时,灯泡 正常发光,电流表示数为 ,电路消耗的总功率为 ;
(2)当 闭合, 、 断开时,电压表示数为 ,则 的阻值为 ,通电 产生的热量为 。
如图所示是探究电流通过导体时产生的热量与 关系的实验装置。通电一段时间,左侧容器和右侧容器中的电阻丝产生的热量之比为 。
一个标有"6V 3W"的小灯泡,接在电源电压为9V的电路中,为使其正常发光,应串联一个 Ω的电阻,该电阻在10秒内产生的热量是 J。