如图,已知AB为⊙O的直径,E是AB延长线上一点,点C是⊙O上的一点,连结EC、BC、AC,且∠BCE=∠BAC.
(1)求证:EC是⊙O的切线.
(2)过点A作AD垂直于直线EC于D,若AD=3,DE=4,求⊙O的半径.
如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.
(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;
(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.
如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
(1)当点D运动到线段AC中点时,DE= ;
(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE= 时,⊙C与直线AB相切.
如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN= .
如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为 .
如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是 .(把所有正确的结论的序号都填上)
如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. | B. |
C. | D. |
如图,点在轴的正半轴上,,,.点从点出发,沿轴向左以每秒1个单位长的速度运动,运动时间为秒.
(1)求点的坐标;
(2)当时,求的值;
(3)以点为圆心,为半径的随点的运动而变化,当与四边形的边(或边所在的直线)相切时,求的值.
如图,在中,AB=AC,以AB为直径的交BC于点M,于点N.
(1)求证:MN是⊙O的切线;
(2)若,AB=2,求图中阴影部分的面积.
如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的 ⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
⑴求证:BE=CE;
⑵求∠CBF的度数;
⑶若AB=6,求的长.
如图⊙O是∆ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE//BC,DE交AB的延长线于点E,连结AD、BD
(1)求证∠ADB=∠E;
(2)当点D运动到什么位置时,DE是⊙O的切线?请说明理由;
(3)当AB=5,BC=6时,求⊙O的半径.
为了测量一个圆形铁环的半径,某同学采用如下的方法:将铁环放在水平桌面上,用一个锐角为300的三角板和一把刻度尺,按如图所示的方法得到相关数据,若三角形、刻度尺均与圆相切(切点为B、P),且测得PA=5,则铁环的半径为_________(保留根号).
如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.
(1)求证:AC是⊙O的切线;
(2)已知sin A=,⊙O的半径为4,求图中阴影部分的面积.
如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为 ( )
A.3 B.4
C.3 D.4