如图,点在轴的正半轴上,,,.点从点出发,沿轴向左以每秒1个单位长的速度运动,运动时间为秒.(1)求点的坐标;(2)当时,求的值;(3)以点为圆心,为半径的随点的运动而变化,当与四边形的边(或边所在的直线)相切时,求的值.
如图,BD、CE为⊿ABC的高,求证⊿AED=⊿ACB.
如图,点C、D在线段AB上,⊿PCD是等边三角形. (1)当AC、CD、DB满足怎样的关系时,⊿ACP∽⊿PDB? (2)当⊿ACP∽⊿PDB时,求⊿APB的度数.
去年夏季山洪暴发,某市好几所学校被山体滑坡推倒教学楼,为防止滑坡,经过地质人员勘测,当坡角不超过时,可以确保山体不滑坡.某小学紧挨一座山坡,如图所示,已知,斜坡长30米,坡角.改造后斜坡与地面成角,求至少是多少米?(精确到0.1米)
如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30º角,且此时测得1米杆的影长为2米,求电线杆的高度
如图23,ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若。 (1)求△ANE的面积; (2)求sin∠ENB的值。