如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为( ).
A.4 | B.5 | C.6 | D.7 |
已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D(如图)。
(1)求证:AC="BD"
(2)若大圆的半径 R=10,小圆的半径r="8," 且点O到直线AB的距离为6,求AC的长。
下列四个命题:(1)直径是弦;(2)经过三个点一定可以作圆;(3)平分弦的直径垂直于弦;(4)圆心角相等,所对的弧相等。其中正确的有( )
A. 1个 | B. 2个 | C.3个 | D. 4 |
如图,在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以AC的长为半径作圆,将
Rt△ABC截去两个扇形,则余下阴影部分的面积为( )cm2
A. | B.24- | C.24- | D.24- |
如图,在O中,直径CD⊥弦AB,则下列结论中正确的是( )
A.AD=AB | B.∠BOC=2∠D | C.∠D +∠BOC=90° | D.∠D=∠B |
如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )
A. B. C. D.2
如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是( )
A. | B.4.75 | C.5 | D.4.8 |
设同一个圆的内接正六边形、正八边形、正十二边形的边心距分别为r6,r8,r12,则r6,r8,r12的大小关系为( )
A.r6>r8>r12 | B.r6<r8<r12 | C.r8>r6>r12 | D.不能确定 |
已知:如图,在中,,点在上,以为圆心,长为半径的圆与分别交于点,且.
(1)判断直线与的位置关系,并证明你的结论;
(2)若,,求的长.
如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)求证:EF2=4OD•OP;
(3)若BC=6,tan∠F=,求AC的长.