初中数学

(1)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E .求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积.
(3)拓展提升:如图3,等边△EBC中,EC=BC=3cm,点O在BC上,且OC=2cm,动点P从点E沿射线EC以1cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120º得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间ts.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AC=AB=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
(1)操作1:固定△ABC,将三角板沿C→B方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿C→B方向平移的距离为
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,设BP=x,记△MPQ的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

阅读下面材料:
小明遇到这样一个问题:如图1,在边长为的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.

小明发现:分别延长QE,MF, NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)。请回答:
(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________;
(2)求正方形MNPQ的面积.
(3)参考小明思考问题的方法,解决问题:
如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若,则AD的长为__________.

来源:2016届山东省新泰市九年级上学期学科学习能力成果展示竞赛数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).

(1)∠PBD的度数为_____,点D的坐标为______ (用t表示);
(2)求证:PE=AP+CE
(3)当t为何值时,△PBE为等腰三角形?

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,BD=8,点P是AC延长线上的一个动点,过点P作PE⊥AD,垂足为E,作CD延长线的垂线,垂足为E,则|PE-PF|=

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.

(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.

来源:2015-2016学年浙江省东阳市江北初中八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.图①~④中这样的图形有()

A.4个 B.3个 C.2个 D.1个
来源:2015-2016学年浙江省东阳市江北初中八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知△ABC中,AB=8,AC=6,AD是中线,求AD的取值范围是

来源:2015-2016学年山东省临沂市八年级上学期阶段性抽测数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点.

(1)若EF=4,BC=10,求△EFM的周长;
(2)若∠ABC=50°,∠ACB=70°,求∠MEF的度数.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,圆柱形容器高18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此
时已知蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的A处,则蚂蚁从外壁A处到达内壁B处的最短距离
cm.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm。

(1)若P、Q是△ABC边上的两个动点,其中点P从A沿A→B方向运动,速度为每秒1cm,点Q从B沿B→C方向运动,速度为每秒2cm,两点同时出发,设出发时间为t秒.①当t=1秒时,求PQ的长;②从出发几秒钟后,△PQB是等腰三角形?
(2)若M在△ABC边上沿B→A→C方向以每秒3cm的速度运动,则当点M在边CA上运动时,求△BCM成为等腰三角形时M运动的时间.

来源:2015-2016学年江苏省无锡市锡山区东亭片八年级上学期期中数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

(1)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.求证:AD=BE.

(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE边DE上的高,连接BE.
①求证:2CM+BE=AE;
②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:

(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关
(2)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.利用(1)的结论,试求∠P的度数;
(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系?并说明理由.

来源:2015-2016学年安徽省蚌埠新城教育集团八年级上学期期中数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC=,BC=2,在BC上有100个不同的点P1、P2、P3…P100(BC中点除外),过这100个点分别作△ABC的内接矩形P1E1F1G1,P2E2F2G2…P100E100F100G100,设每个内接矩形的周长分别为L1、L2…L100,则L1+L2+…+L100

来源:2016届江苏省无锡市北塘区九年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图所示,已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,CD过E点.求证:AB=AC+BD.

来源:2015-2016学年重庆市璧山县青杠初中八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

初中数学三角形的五心试题