初中数学

钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)

(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.]
(2)求渔船和渔政船相遇时,两船与钓鱼岛的距离.
(3)在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

写出一个实数k的值,使得正比例函数y=的图象在二、四象限.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数的图象为直线,一次函数的图象为直线,若,且,我们就称直线与直线互相平行.已知一次函数的图象为直线,过点且与已知直线平行的直线为
解答下面的问题:
(1)求的函数表达式;
(2)设直线分别与轴、轴交于点A、B,过坐标原点O作OC⊥AB,垂足为C,求两平行线之间的距离 ;
(3)若Q为OA上一动点,求QP+QB的最小值,并求取得最小值时Q点的坐标。
(4)在轴上找一点M,使△BMP为等腰三角形,求M的坐标。(直接写出答案)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费 y (元)与用水量 x m3之间的函数关系.其中线段AB表示第二级阶梯时 y x 之间的函数关系.

(1)写出点 B 的实际意义;
(2)求线段 A B 所在直线的表达式;
(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:

家电名称
空调
彩电
冰箱
工 时


1
2



1
3



1
4

产值(千元)
4
3
2

 
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,函数的图象与函数)的图象交于A(,1)B(1,)两点.

(1)求函数的表达式;    
(2)观察图象,比较当时,的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.

(1)当4≤x≤12时,求y关于x的函数解析式;
(2)直接写出每分进水,出水各多少升.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.

(1)图中线段AB所表示的实际意义是     
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.

(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式?
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD、正方形A1B1C1D1和正方形A2B2C2D2均位于平面直角坐标系的第一象限内,它们的边平行于x轴或y轴,其中点A,A1,A2在直线OM上,点C,C1,C2在直线ON上,O为坐标原点,已知点A的坐标为(3,3),正方形ABCD的边长为1.

(1)求直线ON的函数解析式;
(2)若点C1的横坐标为4,求正方形A1B1C1D1的边长;
(3)若正方形A2B2C2D2的边长为m,则点B2的坐标为                 .(用含字母m的代数式表示.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小锋家有一块四边形形状的空地(如图,四边形ABCD),其中AD∥BC,BC=1.6m,AD=5.5m,CD=5.2m,∠C=90°,∠A=53°.小锋的爸爸想买一辆长4.9m,宽1.9m的汽车停放在这块空地上,让小锋算算是否可行.
小锋设计了两种方案,如图1和图2所示.

(1)请你通过计算说明小锋的两种设计方案是否合理;
(2)请你利用图3再设计一种有别于小锋的可行性方案,并说明理由.
(参考数据:sin53°=0.8,cos53°=0.6,tan53°=

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一次函数图象经过(3,8)和(5,12)两点,求一次函数解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个容器中有一个进水管和两个出水管,从某一时刻开始2min内只进水不出水,在随后的4min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.

(1)求a的值;
(2)当2≤x≤6时,求y关于x的函数关系式;
(3)若在6min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某单位准备印刷一批书面材料,现有两个印刷厂可供选择,甲厂的费用分为制作费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲厂的费用y(千元)与书面材料数量x(千份)的关系见表:

书面材料数量x(千份)
0
1
2
3
4
5
6
.........
甲厂的印刷费用y(千元)
1
1.5
2
2.5
3
3.5
4
.........

乙厂的印刷费用y(千元)与书面材料数量x(千份)的函数关系图象如图所示.

(1)请你写出甲厂的费用y与x的函数解析式,并在图中坐标系中画出甲厂的费用y与x的函数图象.
(2)请写出乙厂费用y与x的函数解析式,试求出当x在什么范围内时乙厂比甲厂的费用低?
(3)现有一客户需要印10千份书面材料,请问你如果是客户你如何选择?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题