如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB的解析式;
(2)直线AB上是否存在点C,使△BOC的面积为2?若存在,求出点C的坐标;若不存在,请说明理由.
已知一次函数,
(1)为何值时,它的图象经过原点;
(2)为何值时,它的图象经过点(0,).
如图一次函数y=kx+b的图象经过点A(-1,3)和点B(2,-3).
(1)描出A(-1,3)和点B(2,-3),画出一次函数y=kx+b的图象
(2)y随x的增大而 (填“增大”或“减小”).
如图,在平面直角坐标系内,梯形OABC的顶点坐标分别是:A(3,4),B(8,4),C(11,0),点P(t,0)是线段OC上一点,设四边形ABCP的面积为S.
(1)过点B作BE⊥x轴于点E,则BE= ,用含t的代数式表示PC= .
(2)求S与t的函数关系.
(3)当S=20时,直接写出线段AB与CP的长.
如图,一次函数y=x+6与反比例函数的图象相交于A,B两点,与x轴、y轴交于E、F,点B的横坐标为。
(1)试确定反比例函数的解析式;
(2)求点E、F的坐标。
如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.
(1)点A坐标是 ,点B的坐标 ,BC= .
(2)当点P在什么位置时,△APQ≌△CBP,说明理由.
(3)当△PQB为等腰三角形时,求点P的坐标.
如图,已知一次函数的图象与反比例函数的图象交于,两点,且点的横坐标和点的纵坐标都是.
求:(1)一次函数解析式;
(2)求的面积.
开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.
(1)图中线段AB所表示的实际意义是 ;
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?
(本小题12分)如图,直线分别交轴于、,点是该直线与反比例函数在第一象限内的一个交点,轴于,且.
(1)求点的坐标;
(2)设点与点在同一个反比例函数的图象上,且点在直线的右侧,作轴于,当与相似时,求点的坐标.
如图,反比例函数与一次函数y=x+b的图象,都经过点A(1,2)
(1)试确定反比例函数和一次函数的解析式;
(2)求一次函数图象与两坐标轴的交点坐标.