(本小题满分12分)已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在上图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商以每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.
(1)填空:△AOB≌△ ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0, ;
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线,顶点随着t的增大向上移动时,求t的取值范围.
如图,⊙M与x轴交于A、B两点,其坐标分别为、,直径CD⊥x轴于N,抛物线经过A、B、D三点,
(1)求m的值及点D的坐标.
(2)若直线CE切⊙M于点C,G在直线CE上,已知点G的横坐标为3.求G的纵坐标
(3)对于(2)中的G,是否存在过点G的直线,使它与(1)中抛物线只有一个交点,请说明理由.
(4)对于(2)中的G直线FG切⊙M于点F,求直线DF的解析式.
某商店经营一种成本为每千克40美元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,
(1)针对这种水产品的销售情况,设销售单价定为x元(x>50),请用的x代数式表示月销售量,以及获得的利润.
(2)当x取什么数时利润最大?最大利润是多少?
如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
(本小题12分)已知抛物线p:和直线l::
(1)对下列命题判断真伪,并说明理由:
①无论k取何实数值,抛物线p总与x轴有两个不同的交点;
②无论k取何实数值,直线l与y轴的负半轴没有交点;
(2)设抛物线p与y轴交点为C,与x轴的交点为A、B,原点O不在线段AB上;直线l与x轴的交点为D,与y轴交点为C1,当OC1=OC+2且OD2=4AB2时,求出抛物线的解析式及最小值.
如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;
(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.
抛物线y=+x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.
(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;
(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;
(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.
如图,在平面直角坐标系中,⊙O的圆心在坐标原点,半径为3.过A(-7,9),B(0,9)的抛物线(a,b,c为常数,且a≠0)与x轴交于D,E (点D在点E右边)两点,连结AD.
(1)若点D的坐标为D(3,0).①请直接写出此时直线AD与⊙O的位置关系;②求此时抛物线对应的函数关系式;
(2)若直线AD和⊙O相切,求抛物线二次项系数a的值;
(3)当直线AD和⊙O相交时,直接写出a的取值范围.
如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.
(1)如图1,若m=.
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).
如图,已知二次函数的图象与坐标轴交于点A(-1, 0)和点
B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.
在平面直角坐标系中,抛物线经过点(0,),(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点关于原点的对称点为,点是抛物线对称轴上一动点,记抛物线在,之间的部分为图象(包含,两点).若直线与图象有公共点,结合函数图像,求点纵坐标的取值范围.
如图,抛物线经过点A(1,0)和点P(3,4).
求此抛物线的解析式,写出抛物线与x轴的交点坐标和顶点坐标,并依此在所给平面直角坐标系中画出抛物线的大致图象;
若抛物线与轴的另一个交点为B,现将抛物线向射线AP方向平移,使P点落在M点处,同时抛物线上的B点落在点D(BD∥PM)处.设抛物线平移前P、B之间的曲线部分与平移后M、D之间的曲线部分,与线段MP、BD所围成的面积为m, 线段 PM为n,求m与n的函数关系式.
如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,6),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为a,△BED的面积为S.
(1)当a=时,求S的值.
(2)求S关于a(a≠)的函数解析式.
己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧)点
A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.