初中数学

图形的操作过程(本题中四个矩形的水平方向的边长均为a,竖直方向的边长均b):

●在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);
●在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图3中,请你类似地画一条有两个折点的线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;
(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:
S1=__________,S2=__________,S3=__________.
(3)联想与探索
 
如上图,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草场地面积是多少?并说明你的猜想是正确的.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示。根据图中的数据(单位:m),解答下列问题:

①用含的代数式表示地面总面积;
②当时,若铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多元?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.

(1) 用含a、b的代数式表示绿化面积;
(2) 求出当a=3米,b=2米时的绿化面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,图中的物体由7块相同的立方体组成,请画出它的三视图。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某高铁工程即将动工,工程需要测量某一条河的宽度.如图,一测量员在河岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得标杆B在北偏西280处.求河宽AB.(结果精确到1米)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发, 到收工时,行走记录为(单位:千米): +8、-9、+4、+7、-2、-10、+18、-3、+7、+5
回答下列问题:
(1)收工时在A地的哪边?距A地多少千米?
(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB.
(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

.某人2008年初投资120万元于股市,由于无暇操作,第一年的亏损率为20%,以后其亏损率有所变化,至2011年初其股票市值仅为77.76万元,求此人的股票在第二年、第三年平均每年的亏损率.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(10分)某人在银行的信用卡存入2万元,每次取出50元,若卡内余额为 y(元),取钱的次数为x.(利息忽略不计)
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC中,AB=,AC=,BC=2三边的长分别为,求∠A的正切值.

小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC(△ABC三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC相似的格点△DEF,从而使问题得解.
(1)图2中与相等的角为         的正切值为          
(2)参考小华解决问题的方法,利用图4中的正方形网格(每个小正方形的边长均为1)解决问题:如图3,在△GHK中,HK=2,HG=,KG=,延长HK,求的度数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知梯形ABCD,请使用无刻度直尺画图.

(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;
(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知梯形中,.动点点开始以的速度沿线段点运动,动点从点开始以的速度沿线段点运动.点、点分别从两点同时出发,当其中一点停止时,另一点也随之停止。设运动时间为.
 
(1)求的长;
(2)以为圆心、长为半径的与直线相切时,求的值;
(3)是否存在的值,使得以为圆心、长为半径的与以为圆心、长为半径的相切?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2004年12月28日,我国第一条城际铁路-----合宁铁路(合肥至南京)正式开工建设,建成后,合肥至南京的铁路运行里程将由目前的缩短至,设计时速是现行时速的倍。旅客列车运行时间将因此缩短约,求合宁铁路的设计时速

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

列方程解应用题
甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数)

(1)求点P6的坐标;
(2)求△P5OP6的面积;
(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学应用类问题解答题