如图是某汽车维修公司的维修点在环形公路上的分布图。公司在年初分配给A,B,C,D四个维修点某种配件各50件。在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次为多少?说明理由。(注:件配件从一个维修点调整到相邻维修点的调动件次为
)
观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
|
图① |
图② |
图③ |
三个角上三个数的积 |
1×(-1)×2=-2 |
(-3)×(-4)×(-5)=-60 |
|
三个角上三个数的和 |
1+(-1)+2=2 |
(-3)+(-4)+(-5)=-12 |
|
积与和的商 |
-2÷2=-1, |
|
|
请用你发现的规律求出图④中的数y和图⑤中的数x.
在密码学中,你直接可以看到的内容为明文(真实文),对明文进行某种处理后得到的内容为密文.现有一种密码把英文的明文单词按字母分解,其中英文的26个字母(不论大小写)依次对应1,2,3,……26这26个自然数,见以下表格:
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
n |
o |
p |
q |
r |
s |
t |
u |
v |
w |
x |
y |
z |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
现给出一个公式:
将明文字母对应的数字x按以上公式计算得到密文字母对应的数字x',比如明文字母为g,g,所以明文字母g对应的密文字母为d.
按照上述规定,将明文good译成的密文是什么?写出你的计算过程;
有甲乙两个水桶,甲水桶里有1千克水,乙桶是空的,第一次将甲桶水里的二分之一倒入乙桶,第二次将乙桶里的三分之一倒入甲桶,第三次将甲桶的四分之一倒入乙桶,第四次又将乙桶的五分之一倒入甲桶.照这样来回倒下去,一直倒了2000次后,乙桶里有水多少千克?
阅读下列材料,并解答后面的问题:
∵=
(1-
),
=
(
-
), … ,
=
(
-
)
∴……+
=(1-
)+
-
)+ … +
-
)
=
=
=
①在式子中,第五项为 ,第n项为 。
②解方程:=
(有计算过程)
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数 ,点P表示的数 (用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
如图,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形.
(1)一个3×2的矩形用不同的方式分割后,小正方形的个数可以是 ;
一个5×2的矩形用不同的方式分割后,小正方形的个数可以是 ;
(2)一个n×2的矩形用不同的方式分割后,小正方形的个数最少是___________.(直接填写结果).
把几个数用大括号围起来,中间用逗号断开,如:{1,2,-3}、{−2,7,3 ,,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数10-a也必是这个集合的元素,这样的集合我们称为和谐集合.例如集合{2,8},{-1,
,
,11}就是两个和谐集合.
(1)请你判断集合{1,-10},{-2,3.14,5,6.86,12}是不是和谐集合?
(2)请你写出满足条件的两个和谐集合的例子(至少有3个元素且不能与例题举例重复);
(3)写出所有和谐集合中,元素个数最少的集合.
(1)问题:你能比较和
的大小吗?为了解决这个问题,首先写出它的一般形式,即比较
和
的大小(
是正整数),然后我们从分析
,
,
,…这些简单情况入手,从中发现规律,经过归纳,猜想出结论.
通过计算,比较下列各组数的大小(在横线上填写“>”、“<”、“=”号):,
,
,
,
,…
(2)从第(1)题的结果经过归纳,可以猜想出和
的大小关系是什么?
(3)根据上面的归纳猜想,尝试比较和
的大小.
有依次排列的3个数:3,9,8,对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,
,
,9,8,继续依次操作下去,问:从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是多少?
如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2。
已知点A是数轴上的点,完成下列各题:
如果点A表示的数是3,将点A先向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是__________,A、B两点间的距离为__________;
如果点A表示的数是-4,将点A先向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是__________,A、B两点间的距离为__________;
一般地,如果点A表示的数是m,将点A先向右移动n个单位长度,再向左移动t个单位长度,那么终点B表示的数是__________,A、B两点间的距离为__________。