如图,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形.(1)一个3×2的矩形用不同的方式分割后,小正方形的个数可以是 ; 一个5×2的矩形用不同的方式分割后,小正方形的个数可以是 ; (2)一个n×2的矩形用不同的方式分割后,小正方形的个数最少是___________.(直接填写结果).
如图,C,D为线段AB上两点,且AC=BD,AE∥BF.AE=BF.求证:∠E=∠F.
解不等式组:
定义符号的含义为:当时, ;当时, .如:,.(1)求; (2)已知, 求实数的取值范围;(3) 已知当时,.直接写出实数的取值范围.
已知:Rt△A′BC′和 Rt△ABC重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt△A′BC′ 绕点B按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C和线段AA′相交于点D,连接BD.(1)当α=60°时,A’B 过点C,如图1所示,判断BD和A′A之间的位置关系,不必证明;(2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.
在平面直角坐标系中,抛物线过点,,与轴交于点.(1)求抛物线的函数表达式;(2)若点在抛物线的对称轴上,当的周长最小时,求点 的坐标;(3)在抛物线的对称轴上是否存在点,使成为以为直角边的直角三角形?若存在,求出点的坐标;若不存在,请说明理由.