同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n—1)×n=n(n+1)(n—1)时,我们可以这样做:
(1)观察并猜想:
12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3+
=1+0×1+2+1×2+3+2×3+
=(1+2+3+4)+( )
……
(2)归纳结论:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…+n
=1+0×1+2+1×2+3+2×3+…+n+(n一1)×n
=( ) +
= +
=×
(3)实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是 .
我国以2010年11月1日零时为标准计时点,进行了第六次全国人口普查,查得全国总人口约为1370000000人,请将总人口用科学记数法表示为( )
A.1.37×108 | B.1.37×109 |
C.1.37×1010 | D.13.7×108 |
一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )
A.2011 | B.2011 | C.2012 | D.2013 |
下列结论正确的有( )
①符号相反的数互为相反数;
②绝对值等于本身的数有0、1;
③平方后等于本身的数只有0、1;
④若有理数互为相反数,则它们一定异号;
⑤立方后等于本身的数是0和1;
⑥倒数等于本身的数是-1和1.
A.2个 | B.3个 | C.4个 | D.5个 |
下列说法正确的是( )
①最大的负整数是-1;
②数轴上表示数2和-2的点到原点的距离相等;
③当a≤0时,|a|=-a成立;
④a+5一定比a大;
⑤(-2)3和-23相等.
A.2个 | B.3个 | C.4个 | D.5个 |
如下图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第9个图形需要黑色棋子的个数是
A.99 | B.80 | C.63 | D.132 |
利用整式乘法公式计算:2014×2012-20132=_________.
是一个三位的自然数,已知,这个三位数是218;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果是一个四位的自然数,且 ,那么,这个四位数是_____________.
如果ab<0,那么下列判断正确的是( ).
A.a<0,b<0 | B.a>0,b>0 |
C. a≥0,b≤0 | D.a<0,b>0或a>0,b<0 |