计算:.
某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
已知反比例函数 y 1 = k x 的图象与一次函数 y 2 = ax + b 的图象交于点 A ( 1 , 4 ) 和点 B ( m , − 2 ) .
(1)求这两个函数的表达式;
(2)根据图象直接写出一次函数的值大于反比例函数的值的 x 的取值范围.
如图, DB / / AC ,且 DB = 1 2 AC , E 是 AC 的中点,
(1)求证: BC = DE ;
(2)连接 AD 、 BE ,若要使四边形 DBEA 是矩形,则需给 ΔABC 添加什么条件,为什么?
如图,在平面直角坐标系中, Rt Δ ABC 的三个顶点分别是 A ( − 8 , 3 ) , B ( − 4 , 0 ) , C ( − 4 , 3 ) , ∠ ABC = α ° .抛物线 y = 1 2 x 2 + bx + c 经过点 C ,且对称轴为 x = − 4 5 ,并与 y 轴交于点 G .
(1)求抛物线的解析式及点 G 的坐标;
(2)将 Rt Δ ABC 沿 x 轴向右平移 m 个单位,使 B 点移到点 E ,然后将三角形绕点 E 顺时针旋转 α ° 得到 ΔDEF .若点 F 恰好落在抛物线上.
①求 m 的值;
②连接 CG 交 x 轴于点 H ,连接 FG ,过 B 作 BP / / FG ,交 CG 于点 P ,求证: PH = GH .
如图, ΔABC 中, ∠ BAC = 120 ° , AB = AC = 6 . P 是底边 BC 上的一个动点 ( P 与 B 、 C 不重合),以 P 为圆心, PB 为半径的 ⊙ P 与射线 BA 交于点 D ,射线 PD 交射线 CA 于点 E .
(1)若点 E 在线段 CA 的延长线上,设 BP = x , AE = y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.
(2)当 BP = 2 3 时,试说明射线 CA 与 ⊙ P 是否相切.
(3)连接 PA ,若 S ΔAPE = 1 8 S ΔABC ,求 BP 的长.