如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF. (1)求证:①△ABG≌△AFG; ②求GC的长; (2)求△FGC的面积.
已知一次函数的图像与轴、轴分别相交于点A、B,点P在该函数图像上, P到轴、轴的距离分别为、。 (1)当P为线段AB的中点时,求的值; (2)直接写出的范围,并求当时点P的坐标; (3)若在线段AB 上存在无数个P点,使(为常数), 求的值.
如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA 上的动点,且AE=BF=CG=DH. (1)求证:四边形EFGH是正方形; (2)判断直线EG是否经过一个定点,并说明理由; (3)求四边形EFGH面积的最小值。
如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F。 (1)试说明DF是⊙O的切线; (2)若 AC=3AE,求。
如图,某仓储中心有一斜坡AB,其坡度为,顶部A处的高AC为4m,B、C在同一水平地面上。 (1)求斜坡AB的水平宽度BC; (2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5m,EF=2m.将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高。(,结果精确到0.1m)
已知二次函数的图像经过点,对称轴是经过且平行于轴的直线。 (1)求、的值 (2)如图,一次函数的图像经过点,与轴相交于点,与二次函数的图像相交于另一点B,点B在点P的右侧,, 求一次函数的表达式。