某射击运动员在同一条件下的射击成绩记录如下:
射击次数 |
20 |
80 |
100 |
200 |
400 |
1000 |
"射中九环以上"的次数 |
18 |
68 |
82 |
168 |
327 |
823 |
"射中九环以上"的频率(结果保留两位小数) |
0.90 |
0.85 |
0.82 |
0.84 |
0.82 |
0.82 |
根据频率的稳定性,估计这名运动员射击一次时"射中九环以上"的概率约是
A. |
0.90 |
B. |
0.82 |
C. |
0.85 |
D. |
0.84 |
为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:
身高 |
|
|
|
|
人数 |
60 |
260 |
550 |
130 |
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于 的概率是
A. |
0.32 |
B. |
0.55 |
C. |
0.68 |
D. |
0.87 |
大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 .
一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:
摸球的次数 |
200 |
300 |
400 |
1000 |
1600 |
2000 |
摸到白球的频数 |
72 |
93 |
130 |
334 |
532 |
667 |
摸到白球的频率 |
0.3600 |
0.3100 |
0.3250 |
0.3340 |
0.3325 |
0.3335 |
(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是 .(精确到 ,由此估出红球有 个.
(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.
技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为 .(结果要求保留两位小数)
在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .
某射击运动员在同一条件下的射击成绩记录如下:
射击次数 |
20 |
40 |
100 |
200 |
400 |
1000 |
“射中9环以上”的次数 |
15 |
33 |
78 |
158 |
321 |
801 |
“射中9环以上”的频率 (结果保留小数点后两位) |
0.75 |
0.83 |
0.78 |
0.79 |
0.80 |
0.80 |
根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是 0.8 (结果保留小数点后一位).
在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有 个.
下列说法错误的是
A. |
必然事件发生的概率是1 |
B. |
通过大量重复试验,可以用频率估计概率 |
C. |
概率很小的事件不可能发生 |
D. |
投一枚图钉,"钉尖朝上"的概率不能用列举法求得 |
为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:,并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为 , ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于的概率.
某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温 有关,现将去年六月份(按30天计算)的有关情况统计如下:
(最高气温与需求量统计表)
最高气温 (单位: |
需求量(单位:杯) |
|
200 |
|
250 |
|
400 |
(1)求去年六月份最高气温不低于 的天数;
(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;
(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温 满足 (单位: ,试估计这一天销售这种鲜奶所获得的利润为多少元?
在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
摸球试验次数 |
100 |
1000 |
5000 |
10000 |
50000 |
100000 |
“摸出黑球”的次数 |
36 |
387 |
2019 |
4009 |
19970 |
40008 |
“摸出黑球”的频率(结果保留小数点后三位) |
0.360 |
0.387 |
0.404 |
0.401 |
0.399 |
0.400 |
根据试验所得数据,估计“摸出黑球”的概率是 .(结果保留小数点后一位)
某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图.
(1)请补全该条形统计图;
(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率.
①求这台机器在使用期内共更换了9个该易损零件的概率;
②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?
下列说法错误的是
A. |
必然事件发生的概率为1 |
B. |
平均数和方差都不易受极端值的影响 |
C. |
抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度 |
D. |
可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率 |