某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;
维修次数 |
8 |
9 |
10 |
11 |
12 |
频数(台数) |
10 |
20 |
30 |
30 |
10 |
(1)以这100台机器为样本,估计"1台机器在三年使用期内维修次数不大于10"的概率;
(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?
某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;
维修次数 |
8 |
9 |
10 |
11 |
12 |
频数(台数) |
10 |
20 |
30 |
30 |
10 |
(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;
(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?
如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是 .
一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是 ,则袋中有 个红球.
某种油菜籽在相同条件下发芽试验的结果如表:
每批粒数 |
100 |
300 |
400 |
600 |
1000 |
2000 |
3000 |
发芽的频数 |
96 |
284 |
380 |
571 |
948 |
1902 |
2848 |
发芽的频率 |
0.960 |
0.947 |
0.950 |
0.952 |
0.948 |
0.951 |
0.949 |
那么这种油菜籽发芽的概率是 (结果精确到 .
一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有 个白球.
在一个不透明的盒子中装有 个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在 左右,则 的值约为 .
在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有 个.
一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为
A.12B.10C.8D.6
一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为 个.
一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为 个.
在一个不透明的小盒中装有 张除颜色外其它完全相同的卡片,这 张卡片中两面均为红色的只有3张.搅匀后,从小盒中任意抽出一张卡片记下颜色,再放回小盒中.通过大量重复抽取卡片实验,发现抽到两面均为红色卡片的频率稳定在0.3附近,可推算出 的值约为 .
如图,这是一幅长为 ,宽为 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 .
某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为 .