问题提出
如图①,已知直线l与线段AB平行,试只用直尺作出AB的中点.
初步探索
如图②,在直线l的上方取一个点E,连接EA.EB,分别与l交于点M、N,连接MB.NA,交于点D,再连接ED并延长交AB于点C,则C就是线段AB 的中点.
推理验证
利用图形相似的知识,我们可以推理验证AC=CB.
(1)若线段A.B.C.d长度均不为0,则由下列比例式中,一定可以得出b=d的是
A. B. C. D.
(2)由MN∥AB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD,△FND∽△CAD.
所以,有,
所以,AC=CB.
拓展研究
如图③,△ABC中,D是BC的中点,点P在AB上.
(3)在图③中只用直尺作直线l∥BC.
(4)求证:l∥BC.
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.
(1)求证:△ACB∽△DCE;
(2)猜想线段EF与AB有怎样的位置关系,试说明理由。
|
如图:点D在⊿ABC的边AB上,连接 CD,∠1=∠B,AD=4,AC=6, 求:BD的长
点O和△ABC的顶点均在小正方形的顶点.
(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1︰2;
(2)连接(1)中的AA′,求四边形AA′C′C的周长.(结果保留根号)
在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7)。按下列要求画图:以点O为位似中心,将△ABC向y轴左侧按比例尺2:1放大得△ABC的位似图形△A1B1C1,并解决下列问题:
(1)顶点A1的坐标为 ▲ ,B1的坐标为 ▲ ,C1的坐标为 ▲ ;
(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼接成一个平行四边形(非正方形)。写出符合要求的变换过程。
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
(1)将△ABC向左平移4个单位,得到△A1B1C1;
(2)以图中的O为位似中心,将△ABC作位似变换且放大到原来的两倍,得到△A2B2C2.
小明、小亮利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为的小明的影子长是,而小亮刚好在路灯灯泡的正下方点,并测得.
(1)请在图中画出形成影子的光线,交确定路灯灯泡所在的位置;
(2)求路灯灯泡的垂直高度.
如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.
(1)若△BMN与△ABC相似,求t的值;
(2)连接AN,CM,若AN⊥CM,求t的值.
如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.
(1)求证:△AOM∽△DMN;
(2)求∠MBN的度数.
如图,在平面直角坐标系中,已知OA=12cm,OB=6cm,点P从O点开始沿OA边向点A以1cm/s的速度移动,点Q从点B开始沿BO边向点O以1cm/s的速度移动,如果P、Q同时出发,用t(单位:秒)表示移动的时间(0≤t≤6),那么:
(1)当t为何值时,△POQ与△AOB相似?
(2)设△POQ的面积为y,求y关于t的函数关系式.
(本题10分)如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.
(1)用含的式子表示花圃的面积;
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;
(3)若按上述要求施工,同时校长希望长方形花圃的形状与原长方形空地的形状相似,聪明的你想一想能不能满足校长的要求,若能,求出此时通道的宽;若不能,则说明理由。
已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:AC·AD=AB·AE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.